

Heavy industry, Lighter footprint

Latin America's path to a decarbonised metals industry

Julian Kettle Chairman of Metals and Mining

September 2025

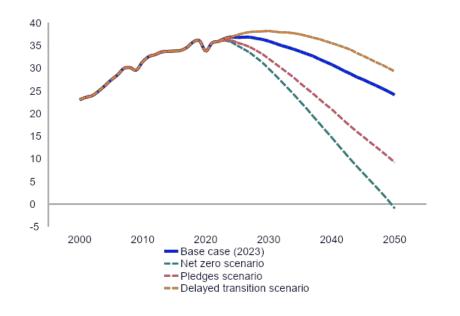
Less focus on the transition as energy security and slow economic growth trump low carbon solutions, so a slower transition looks likely

Net zero policies are being scaled back as fiscal and geopolitical pressures push governments to prioritize domestic issues. Tariffs and slow growth worsen challenges—unless China accelerates its transition

Key points from COP 28 and 29 | Non-Exhaustive

Fossil Fuels

- · Transitioning away from fossil fuels
- · Natural gas as the bridging fuel

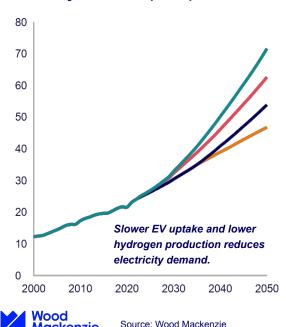

Low Carbon

- Triple Renewables capacity by 2030; nuclear by 2050
- Double the rate of energy efficiency improvements by 2030
- Nuclear energy solidified as a cornerstone of decarbonization
- Conclusion of the first ever Global Stock Take (GST) emphasizing the need for determined action on renewable energy and a just transition

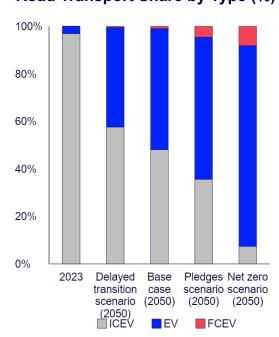
Finance

- Climate finance gap may balloon to US\$4-5 trillion a year by 2030
- Secure a new goal on climate finance, stronger climate action, emissions reduction, and building resilient communities
- Further discussions on equitable climate finance, fossil fuel subsidy reform, national climate commitments and climate justice

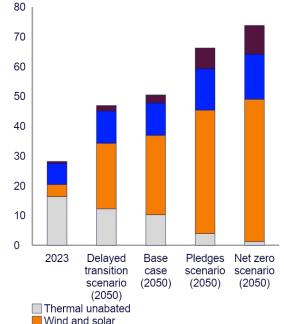
WM Scenarios: Global Energy-Related CO₂ Emissions (Bt)


Wood Mackenzie

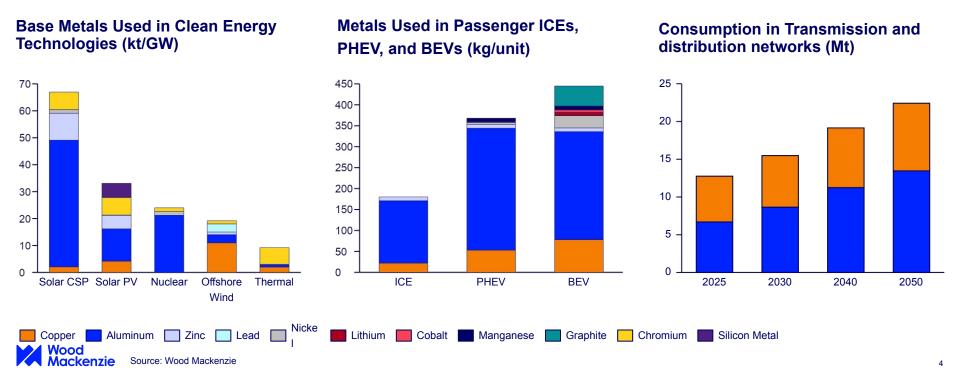
Source: Wood Mackenzie


Irrespective of the pace of the transition electrification is the future; are renewables, storage and EVs the solution?

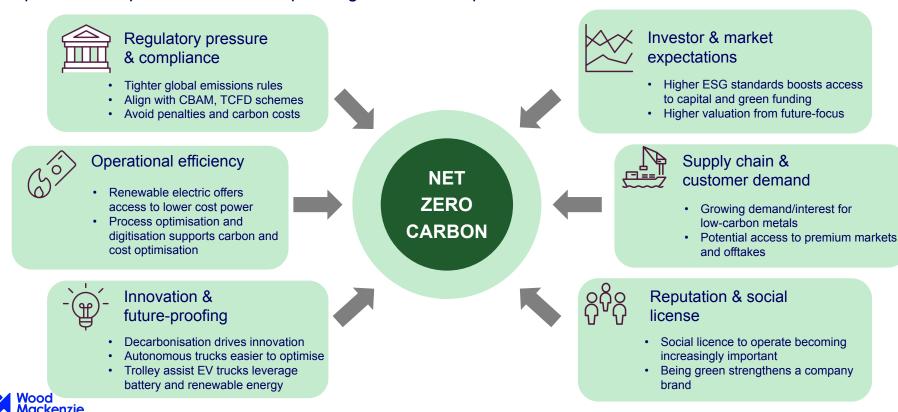
"Critical minerals" supply, storage, grid expansion, economic backdrop and geopolitics among the challenges


Electricity Demand (PWh)

Road Transport Share by Type (%)


Electricity Generation (PWh)

■ Hพฝะอ and nuclear


The generation, transmission, storage and use of electrons is becoming more metals intensive and with an ever-growing list of "critical" metals

Offshore wind needs up to 15x more copper than a coal-fired plant and there is a need for storage!

Strategic drivers for metals decarbonisation


Compliance, competitiveness, future proofing, access to capital, customer demand and social license

٠

Carbon emissions: Current performance snapshot

LatAm's scope 1 & 2 emission profile compares favourably, underpinned by good renewable power availability

Carbon emissions: Targeting key sources for Latin American abatement

Each industry segment has its own unique set of decarbonising opportunities and challenges

Mining emissions by source

Mining activities account for 38% of LatAm's total copper value chain emissions & 16% of zinc's

Mine site processing emissions by source

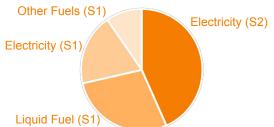
Mine processing activities account for 25% of LatAm's total copper value chain emissions & 13% of zinc's

Scope 1 Direct Emissions

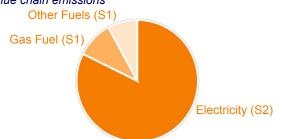
Emissions from operations, including equipment and processes, that a company directly controls.

Scope 2 Indirect Emissions

Emissions from electricity used by operations, generated indirectly and typically from the grid.


Scope 3 Indirect Emissions

Emissions from sources not owned or controlled and include supply chain, transportation, product usage


Copper smelting emissions by source

Smelter operations account for **22%** of LatAm's total copper value chain emissions

Zinc smelting emissions by source

Smelter operations account for **69%** of LatAm's total zinc value chain emissions

Scope 1 abatement: Requires a proactive multifaceted strategy

Hybrid/BEV/FCEV mining equipment

Haul trucks represent bulk of emitters from mine fleets, but there is a growing list of OEM/, mining company and initiatives to provide electrified options, including:

- Electric trolley
- · Recharging stations
- · Hydrogen refuelling and storage
- Electrolysers

More efficient mines = less emissions

Autonomous mine fleets with big data optimisation management of mining fleets will lead to more efficient digging, improved truck queuing, optimal drilling for improved productivity and less fuel. But requires a fundamental re-evalution of mine designs and potential fleet and truck sizes.

Biofuels to replace diesel

Seen as a stop gap for mobile mine equipment decarbonisation An option to replace diesel in ANFO explosives

Removing carbon from processes

Hydrogen and electricity replacements in roasting, calcining, drying, reduction processes reliant on coal and other fossil fuels

Recycling to play a pivotal role

The secondary metal market is fundamental to the global net zero pathway including smelting with goals of 100% scrap use

Heat recovery improvements

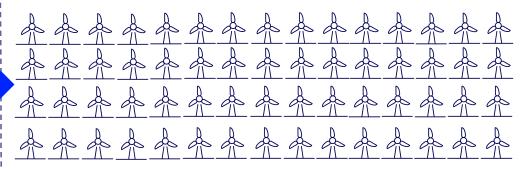
Recovery of heat generated during smelting/ refining processes to improve overall facility efficiencies and drive lower emissions

8

Scope 1 abatement: Scale of the challenge is huge e.g. electrification of mine haul fleet requires Denmark scale supply of renewable power

First miners must secure the power to run them, install grid infrastructure and then finance the trucks!

SCENARIO: Converting global copper mine haul trucks from diesel to electricity by 2030


 9.1 billion litres of diesel in 2030, surface and U/G mines

Assume 65% used for haul trucks

6 billion litres for haul trucks

 5.6 kWh of electrical energy equivalent/litre of diesel (90% efficiency for BEV versus 35% for diesel) 12 to 16 GW - Incremental renewable power equivalent for <u>haul trucks alone</u>

 ~35 TWh of electricity for haul trucks alone or the electricity used by Denmark in a year Critical for the mining industry to understand their power needs earlier to plan with electricity providers and governments

Source: Wood Mackenzie

Scope 2 abatement: Options for reducing emissions from power?

The dominant trend has been towards corporate renewable power purchase agreements

Rely on the grid energy mix

Advantage	Disadvantage
Typically, the grid is more accessible and convenient for end-users.	Chances of grid not being able to meet peak demand or adjust to extreme weathers
No capital investment required versus self-generation.	Potentially more exposed to price volatility and energy shocks.
	Little control over decarbonisation targets

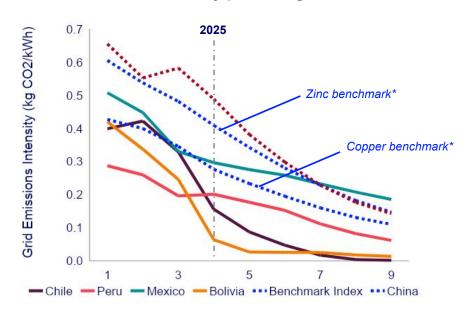
Invest in self-generation

Advantage	Disadvantage
Can reduce grid interruptions by tapping into self-generated source for electricity needs	Huge upfront cost and maintenance cost
Some flexibility in capital management. Can control zero-carbon pathway	Non-core business or skill set
Control over net-zero pathway	

Power purchase agreements (PPAs)

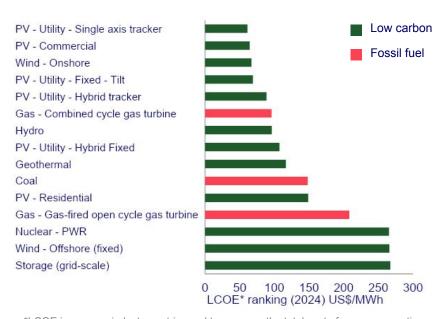
Advantage	Disadvantage
The agreed upon price reduces corporate off-takers' exposure to market risk and allows them to hedge against any anticipated upward price pressure	May include annual cost escalations which may net off cost benefits reaped from reducing exposure to price volatility
Allows corporate off-taker to fulfil its climate target by having an option of only procuring renewable sources	May include penalties for early contract terminations

Disadvantage


Advantage

Scope 2 abatement: The outlook for electricity grid decarbonisation?

Renewables' rising competitiveness over fossil fuel options is accelerating LatAm's energy transition


Grid decarbonisation of key producing countries

* Average grid emissions of top 10 producing countries weighted by mine production Source: Wood Mackenzie – Energy Transition Service

Wood Mackenzie

LatAm's levelised cost of electricity (LCOE) installation

*LCOE is a power industry metric used to measure the total cost of power generation over a project's lifetime

Source: Wood Mackenzie – Latin America levelised cost of electricity (LCOE) report

Technology: Leach processing to reduce smelting dependency

New technology could offset declining leached Cu while reducing concentrate transport and smelting emissions

New leach technologies being implemented

Key advantages:

Jetti (Catalytic Leaching)

- Uses a proprietary catalyst (thiocarbonyl compounds) that enables copper extraction from chalcopyrite, which is typically refractory to conventional leaching.
- The catalyst prevents and removes the passivation layer, enabling reprocessing of previously leached material.

Nuton (Bioleaching)

- Leverages engineered microorganisms specifically adapted to target ore mineralogy to accelerate copper extraction from primary sulphide ores, particularly chalcopyrite.
- Under favourable conditions, Rio Tinto affirms that the technology can enable up to 85% copper recovery rates, surpassing industry benchmarks.

Cuprochlor & Cuprochlor-T (Chloride Leaching)

- They use a mix of leach solution, chloride salts, and sulphuric acid to treat sulphide ores, with Cuprochlor-T applying elevated temperatures ~30 °C to process primary sulphides.
- Antofagasta reports ~90% recovery from secondary sulphides with Cuprochlor, and >70% from primary sulphides using Cuprochlor-T.

Albion (Atmospheric oxidative leaching)

- This technology combines ultrafine grinding (via IsaMilITM) with oxidative leaching at atmospheric pressure to extract Cu, Zn, and Au from variable and low-grade feed.
- Glencore states that the process operates at atmospheric pressure, making it safer and more cost-effective than POx systems, with up to 99% copper recovery from chalcopyrite.

*Smelting will remain dominant: But its carbon intensity makes it a target for innovation and substitution, especially for new projects. A notable example is Aurubis's pilot-scale implementation of Metso Outotec's hydrogen-ready anode furnace technology at its Hamburg East copper smelter, which is set to become the first to use hydrogen instead of natural gas—potentially cutting 5,000 tonnes of CO₂ annually.

Scope 3 abatement: Four Strategies have emerged in metals and mining

Each scope 3 strategy varies in its speed of emissions reduction and effectiveness

Technology development

ransition-focused nivot

Supply chain optimisation

Carbon offsets

Develop low-carbon technologies and shape demand for the commodities companies produce. Includes using VC to broaden technology development.

Focus diversification on commodities with lower and easier-to-abate downstream emissions. Includes exiting or retiring thermal and met. coal.

Selectively move to lower-emissions-intensity partners, e.g. through near-shoring.

Expansion of mineral and nature-based offset projects to offset continued Scope 3 emissions (potential to develop carbon-as-a-business).

Diverse pipeline of low carbon technology reduces risk. Optimise solutions for products. Leverages technical and financial strength.

Exposure to buoyant commodities with strong growth outlook. Leverage existing expertise.

Localisation brings alignment in objectives in similar policy environment. Lower costs associated with shorter transport routes.

Leverage large land holdings and ultramafic mineralogy to scale up rapidly. Allows for focus on lower abatement cost decarbonisation solutions.

is too slow to hit climate goals. Risk of lower returns and profitability in downstream operations.

Lower-margin businesses and a lack of organic growth options requires M&A. Legacy scope 3-intensive products still required for the transition.

standalone basis. Localisation comes with concentration risk.

Achieving the scale of offsets required for downstream industries. Risk of stakeholder backlash due to lower actual emissions reduction.

Technology commercialization

Limited impact on a

Battles on multiple fronts to decarbonise Latin America's metals industry

Near-term investment and technology advancements critical to support future net zero success

1. Growing a renewable power and transmission backbone

M&M decarbonisation lives and dies on adequate incremental renewable power **AND** strong transmission infrastructure **FULL STOP**. Industry needs confidence the power will be there when needed but it is a two-way street. Storage?

Wood Mackenzie

2. Proving and scaling diesel replacement solutions

Late 2020s will see the first true BEV ultra class mine haul trucks arriving in force though the "devil is in the details" for a successful and more widespread rollout. Trolley assist? Hybrids? Alternative fuels? Other equipment?

3. Rethinking mine planning and operations

Traditional approaches to mine design and operations will be challenged. Low carbon equipment and infrastructure, autonomous fleets, new labour requirements and expectations plus AI requires a total rethink of what mining is, how we do it and how much it costs

4. Alternative carbon-free smelting solutions

Copper and zinc smelting technologies mainly rely on electricity and will be supported by the transition to renewables. Developments in the direct leaching of ore will reduce smelting dependency, and support efficiencies through reduced milling of ore.

Q&A

Disclaimer

These materials, including any updates to them, are published by and remain subject to the copyright of the Wood Mackenzie group ("Wood Mackenzie"), or its third-party licensors ("Licensors") as relevant, and are made available to clients of Wood Mackenzie under terms agreed between Wood Mackenzie and those clients. The use of these materials is governed by the terms and conditions of the agreement under which they were provided. The content and conclusions contained are confidential and may not be disclosed to any other person without Wood Mackenzie's prior written permission. Wood Mackenzie makes no warranty or representation about the accuracy or completeness of the information and data contained in these materials, which are provided 'as is'. The opinions expressed in these materials are those of Wood Mackenzie, and do not necessarily represent our Licensors' position or views. Nothing contained in them constitutes an offer to buy or to sell securities, or investment advice. Wood Mackenzie's products do not provide a comprehensive analysis of the financial position or prospects of any company or entity and nothing in any such product should be taken as comment regarding the value of the securities of any entity. If, notwithstanding the foregoing, you or any other person relies upon these materials in any way, Wood Mackenzie does not accept, and hereby disclaims to the extent permitted by law, all liability for any loss and damage suffered arising in connection with such reliance.

Copyright © 2025, Wood Mackenzie Limited. All rights reserved.

Europe +44 131 243 4477 Americas +1 713 470 1700 Asia Pacific +65 6518 0888

Email contactus@woodmac.com Website www.woodmac.com

Wood Mackenzie™ is a trusted intelligence provider, empowering decision-makers with unique insight on the world's natural resources. We are a leading research and consultancy business for the global energy, power and renewables, subsurface, chemicals, and metals and mining industries.

For more information visit: woodmac.com

WOOD MACKENZIE is a trademark of Wood Mackenzie Limited and is the subject of trademark registrations and/or applications in the European Community, the USA and other countries around the world.

Carbon emissions: Targeting key sources for abatement

Each industry segment has its own unique set of decarbonising opportunities and challenges

Mining emissions by source

Mining activities account for 38% of LatAm's total copper value chain emissions & 16% of zinc's

Copper processing (mine site)

Mine processing activities account for 25% of LatAm's total copper value chain emissions & 13% of zinc's

Scope 1 Direct Emissions

Emissions from operations, including equipment and processes, that a company directly controls.

Scope 2 Indirect Emissions

Emissions from electricity used by operations, generated indirectly and typically from the grid.

Scope 3 Indirect Emissions

Emissions from electricity used by operations, generated indirectly and typically from the grid.

Copper smelting emissions by source

Zinc smelting emissions by source

Most copper and diversified companies are targeting scope 1&2 net zero by 2050

The path to get there is varied – some companies have interim 2030 targets that look very ambitious

Carbon reduction targets of diversified mining companies

		AngloAmerican	BHP	Fortescue.	GLENCORE	RioTinto	EIII IIIE SOUTH22	VALE	⊚ ZiJiN	ANTOFAGASTA PLC	CODELCO	FIRST QUANTUM	FREEPORT-MCMoRAN	SOUTHERN COPPER BURDONIUG	Teck
Net zero 2050	Scope 1 & 2	2040	~	2030	~	•	~	•	•	~	V	×	~	V	•
(or before)	Scope 3	×	•	2040	~	×	~	•	•	~	V	×	×	×	•
Interim target	Scope 1 & 2	30% by 2030	30% by 2030	NA	25% by 2030; 50% by 2035	50% by 2030	50% by 2035	33% by 2030	Intensity - 38% by 2029	50% by 2035	70% by 2030	50% by 2035	Various by 2030	40% by 2035	Intensity - 33% by 2030
(between 2030 and 2050)	Scope 3	50% by 2040	Shipping, iron ore - 2030	Shipping, iron ore - 2030	25% by 2030; 50% by 2035*	Shipping - 40% by 2030	×	15% by 2035	×	10% by 2030	25% by 2030	×	×	×	Shipping - 40% by 2030
Short-term target (2025 to 2030)	Scope 1 & 2	×	×	×	15% by 2026	15% by 2025	×	×	Carbon peak by 2029*	30% by 2025	×	30% by 2025	×	8% by 2027	Net zero scope 2 by 2025
	Scope 3	×	×	×	25% by 2030	×	×	×	×	×	×	×	×	×	×

19